Almost globally stable tracking on compact Riemannian manifolds
نویسندگان
چکیده
In this article, we propose a control law for almostglobal asymptotic tracking (AGAT) of a smooth reference trajectory for a fully actuated simple mechanical system (SMS) evolving on a Riemannian manifold which can be embedded in a Euclidean space. The existing results on tracking for an SMS are either local, or almost-global, only in the case the manifold is a Lie group. In the latter case, the notion of a configuration error is naturally defined by the group operation and facilitates a global analysis. However, such a notion is not intrinsic to a Riemannian manifold. In this paper, we define a configuration error followed by error dynamics on a Riemannian manifold, and then prove AGAT. The results are demonstrated for a spherical pendulum which is an SMS on S.
منابع مشابه
Averaging for nonlinear systems evolving onRiemannian manifolds
This paper presents an averaging method for nonlinear systems defined on Riemannian manifolds. We extend closeness of solutions results for ordinary differential equations onR to dynamical systems defined on Riemannian manifolds by employing differential geometry. A generalization of closeness of solutions for periodic dynamical systems on compact time intervals is derived for dynamical systems...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملLower Bounds of the Dirac Eigenvalues on Compact Riemannian Spin Manifolds with Locally Product Structure
We study some similarities between almost product Riemannian structures and almost Hermitian structures. Inspired by the similarities, we prove lower eigenvalue estimates for the Dirac operator on compact Riemannian spin manifolds with locally product structures. We also provide some examples (limiting manifolds) for the limiting case of the estimates. MSC(2000): 53C25, 53C27, 58B20
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.00796 شماره
صفحات -
تاریخ انتشار 2015